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Abstract

In this paper, we study the solution of certain optimal control problems by the use
of an off-line Riccati Partial Differential Equation which is shown to be equivalent to
the Hamilton-Jacobi-Bellman (HJB) equation, when the value function is sufficiently
smooth. We develop a geometric existence theory for classical, weak and generalized
solutions of the Riccati Partial Differential Equation. For finite and infinite time hori-
zon problems, we also investigate the relationship of such solutions to optimal control
laws. Indeed, as corollaries of certain of our existence results, we obtain smoothness
results for the value function of the corresponding optimal control problem.

1 Introduction

Consider a control system having the form

ẋ = f(x) + g(x)u(t) (1.1)

where x ∈ Rn, and where for each t, u(t) ∈ Rm. We assume that the vector fields f, gi

are Cr in x, r ≥ 1 and that the ui(t) are piecewise continuous functions. In particular, for

each pair (x(0), u(t)), the system (1.1) has a unique solution for t << ∞. Furthermore, we

assume that f(0) = 0. For the system (1.1) we shall consider the problem of minimizing the

cost functional

JT (x(0), u) =

∫ T

0

L(x, u)dt + Q(x(T )) (1.2)

for both the cases T < ∞, and for T = ∞ and Q(x) ≡ 0.

Our initial assumptions concerning (1.2) are that Q(x) is Cq+1, q ≥ 1 and that L(x, u) is

Cs+1, s ≥ 1, and satisfies:

H1: for each fixed x, ∂L
∂u

(x, ·) is a diffeomorphism;

H2: for each fixed x, L(x, u) has a minimum at u = 0, and L(0, 0) = 0.
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In particular, we note that ∂2L
∂u2 (x, u) > 0 for all (x, u) and therefore that (H1)–(H2) imply

that L(x, u) is strictly convex in u.

H3: 0 is a critical point of Q, and Q(0) = 0.

We consider the Hamiltonian

H(x, p, u) = 〈p, f(x) + g(x)u〉 − L(x, u)

and note that, by (H1), for each (x, p) there is a unique u∗(x, p), Ck in (x, p), which satisfies

0 =
∂H

∂u
|u=u∗ = 〈p, g(x)〉 − ∂L

∂u
(x, u∗)

Moreover, in the light of (H2), for each fixed pair (x, p), the value u∗(x, p) in fact maximizes

H(x, p, u) Defining a Hamiltonian function, H∗(x, p), via H∗(x, p) = H(x, p, u∗(x, p)) we note

that according to the Maximum Principle, for the Bolza Problem every extremal control u∗(t)

for any initial condition x(0) gives rise to a trajectory, or canonical pair, (x(t), p(t)) satisfying

ẋ(t) =
∂H∗

∂p
(1.3)

ṗ(t) = −∂H∗

∂x
(1.4)

and

p(T ) = −∇Q(x(T )). (1.5)

We shall first impose a further simplifying asumption on (1.1)–(1.2).

H4: The canonical system (1.3)–(1.4) is complete.

Now consider the closed, connected Ck submanifold of R2n defined via

MT = {(x, p) : p = −∇Q(x)} (1.6)

MT is of course the submanifold of terminal constraints given by the transversality condi-

tions. We note that for t ∈ [0, T ]

Mt = Φt−T (MT ) (1.7)

is a closed, connected Lagrangian Ck submanifold of R2n consisting of those pairs (x(t), p(t))

which satisfy (1.3)–(1.4), with initial time t0 = t. In particular, for s ∈ [t, T ]

u(s) = u∗(x(s), p(s))

is an extremal control for the Bolza problem (1.1)–(1.2) with initial time t0 = t. Moreover,

to say

Ms = graph(−π(x, s)), t ≤ s ≤ T

is to say that all extremal controls for t ≤ s ≤ T can be given in feedback form

u(s) = u∗(x(s),−π(x(s), s)), t ≤ s ≤ T.

We first derive conditions on π(x, t) so that the geometric condition (1.8) will be satisfied.
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Theorem 1.1. Necessary and sufficient conditions for the existence of a C` function

π(x, t), 1 ≤ ` ≤ k,

such that

Mt = graph(−π(x, t))

for t ∈ [t0, T ], x ∈ Rn is that π(x, t) satisfy the following “Riccati” partial differential

equation, for (x, t)εRn × (t0, T )

∂π

∂t
=

∂H∗

∂x
(x,−π)− ∂π

∂x

∂H∗

∂p
(x,−π) (1.8)

π(0, t) = 0, π(x, T ) = ∇Q(x) (1.9)

In particular, the Riccati partial differential equation has a Ck solution if, and only if, it has

a C1 solution.

We prove solvability of the Riccati PDE with a C` function π(x, t) is equivalent to solv-

ability of the Hamilton-Jacobi-Bellman equation with a C`+1 function V (x, t) in Ck+1 if, and

only if, it is C2.

If (Mt) is always the graph of a smooth function we say (Mt) is a strong solution of

the Riccati equation. If (Mt) is the graph of a continuous function, we say there exists a

weak solution. In general, the family (Mt) of Lagrangian submanifolds is referred to as a

generalized solution.

In the hierarchy of classical, weak and generalized solutions of the Riccati PDE, we show

that there is a corresponding hierarchy of regularity for the value function: To say the value

function is C2 is to say it is Ck, which is to say a classical solution of the Riccati PDE exists.

To say the value function V is C1 but not C2 is to say V is Ck on an open dense subset and

that a weak solution of the Riccati PDE exists. To say that V is not C1 is to say the unique

generalized solution of the Riccati PDE is not a weak solution but is instead multi-valued.
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